SEREC LIGHTNING: DETECTION and PROTECTION

ETZ Zurich, October 14, 2011

LIGHTNING PROTECTION IEC EN 62305 Standard

Prof. Dr Eng. Christian Bouquegneau

Former Rector of the Polytechnical University of Mons (Belgium) Chairman of CENELEC TC 81X (Lightning Protection)

IEC TC 81 : LIGHTNING PROTECTION

IEC 62305-1	Part 1: General Principles
	1-1 Protection against lightning
	1-2 Test parameters simulating the effects of lightning on LPS components
IEC 62305-2	Part 2 : Risk management
	2-1 Risk assessment method
	2-2 Risk components for structures
	2-3 Risk components for services
IEC 62305-3	Part 3: Physical damage and life hazard
	3-1 Lightning protection system (LPS) = external + internal
	3-2 Protection measures against injuries of living beings due to touch and step voltages
	3-3 Design, installation, maintenance and inspection of LPS
IEC 62305-4	Part 4: Electrical and electronic systems within structures
	4-1 Protection against LEMP : general principles
	4-2 Earthing and bonding; magnetic shielding and line routing
	4-3 SPD system
	4-4 Management of an LPM system

Striking distance

 $I = 10.6 Q^{0.7}$

Electrogeometric model applied to a vertical rod

ICLP:

www.iclp-centre.org

- 1) Cautionary message
- 2) ESE and other non-conventional Lightning Protection Systems, by Prof. Aage E. Pedersen

*

<u>CEB-BEC</u> (January 2007)

Aware of the use of non-conventional LP systems (ESE, PDA...) on the Belgian market, CEB-BEC is following the advice of the international scientific community, insisting on the non-efficiency of such devices and strongly warns the users against the installation of these devices.

General principles

SCOPE

Protection against lightning

of

- structures including their installations and contents as well as persons;
- services connected to a structure

Outside:

- railway systems;
- vehicles, ships, aircraft, offshore installations;
- underground high pressure pipelines;
- pipe, power and telecommunication lines not connected to a structure.

Sources of damages (S)

- S1: strike to a structure
- S2: ground close to a structure
- S3: service entering a structure
- S4: close to service entering a structure

<u>Types or causes of damages</u> (D or C)

C1: injury of living beingsC2: physical damages (fire, explosion...)C3: failure of internal systems

Types of losses (L) and risks associated (R)

- L1: loss of living beings
- L2: loss of public service
- L3: loss of cultural heritage
- L4: loss of economic values

Point of strike	Example	Source of damage	Cause of damage	Type of damage
Structure		S1	C1 C2 C3	L1,L4 ^b L1,L2,L3,L4 L1 ^a ,L2,L4
Earth next to the structure		S2	C3	L1ª,L2,L4
Entering supply line		S3	C1 C2 C3	L1, L1,L2,L3,L4 L1ª,L2,L4
Earth next to entering supply line		S4	C3	L1ª,L2,L4
^a For hospitals ar ^b For agricultural	nd explosive structures properties (loss of animals).			

- (1) Only for hospitals and structures with risk of explosion
- (2) Only for structures with electronic systems
- (3) Only for properties of agricultural value (loss of animals)

Typical values of tolerable risk R_T

Type of damage	R _T
Loss of human life	10 ⁻⁵
Loss of service to the public	10 ⁻³
Loss of cultural heritage	10 ⁻⁴

R₄ (economic value)

measures convenient if $C_{RL} + C_{PM} < C_L$

with C_{RL} = residual loss when protection measures

C_{PM} = cost of protection measures

Lightning Protection Zones (LPZ)

Determined by protection measures such as LPS, shielding wires, magnetic shields and SPDs

 LPZ 0_A : Exposed to direct lightning strikes.
Full lightning current and full lightning electromagnetic field. Internal systems may be subjected to full or partial lightning surge current.

 – LPZ 0_B : Protected against direct lightning strikes.
Partial lightning or induced current and exposed to full lightning electromagnetic field.

– LPZ 1 : Protected against direct lightning strikes.
Surge current is limited by current sharing and by SPDs at the boundary.
Spatial shielding may attenuate the lightning electromagnetic field
(damped lightning electromagnetic field).

 LPZ 2, ..., n : as LPZ1, surge current is further limited by current sharing and by additional SPDs at the boundary.
Additional spatial shielding may be used to further attenuate the lightning electromagnetic field.

General principle for the division into different LPZ

This Figure shows an example for dividing a structure into inner LPZs.

All metal services entering the structure are bonded via bonding bars at the boundary of LPZ 1.

In addition, the metal services entering LPZ 2 (e.g. computer room) are bonded via bonding bars at the boundary of LPZ 2.

Figure 3 <u>LPZ</u> <u>defined by</u> <u>protection</u> <u>measures</u> <u>against</u> <u>LEMP</u> (IEC 62305-4)

1 Structure (Shield of LPZ 1)

2 Air-termination system

- 3 Down-conductor system
- 4 Earth-termination system
- 5 Room (Shield of LPZ 2)
- 6 Services connected to the structure

- S₄ Flash near a service connected to the structure
- R Rolling sphere radius

S₁

 S_2

S₃

- ds Safety distance against too high magnetic field
 - C Lightning equipotential bonding by means of SPDs
 - LPZ 0_A Direct flash, full lightning current, full magnetic field
 - LPZ 0_B No direct flash, partial lightning or induced current, full magnetic field
 - LPZ 1 No direct flash, limited lightning or induced current, damped magnetic field
 - LPZ 2 No direct flash, induced currents, further damped magnetic field Protected volumes inside LPZ 1 and LPZ 2 must respect safety distances d_s

Parameters	Unit	Values (%) exceeding the indicated ones			
		95%	50%	5%	
Peak currents					
first negative strokes and negative flashes	kA	14	30	80	
subsequent negative strokes	kA	4.6	12	30	
positive flashes	kA	4.6	35	250	
Charge					
first negative strokes and	С	1.1	5,2	24	
subsequent negative strokes	C	0.2	1.4	11	
negative flashes	С	1.3	7.5	40	
positive flashes	С	20	80	350	
Front duration					
first negative strokes	μs	1.8	5,5	18	
subsequent negative strokes	μs	0.22	1.1	4.5	
positive flashes	μs	3.5	22	200	
Maximum rate of rise (di/dt)					
first negative strokes	kA/μs	5.5	12	32	
subsequent negative strokes	kA/µs	12	40	120	
positive flashes	kA/μs	0.2	2.4	32	
Pulse duration					
first negative strokes	μs	30	75	200	
subsequent negative strokes	μs	6.5	32	140	
positive flashes	μs	25	230	2000	
Time intervals between					
negative strokes	ms	7	33	150	
Flash duration					
negative (simple or multiple)	ms	0.15	13	1100	
negative (multiple only)	ms	31	180	900	
positive	ms	14	85	500	
i ² dt integral					
first negative strokes and negative flashes	A ² .s	6.0 10 ³	5.5 10 ⁴	5.5 10 ⁵	
subsequent negative strokes	A ² .s	5.5 10 ²	6.0 10 ³	5.2 104	
positive flashes	A ² .s	$2.5 \ 10^5$	$6.5 \ 10^5$	$1.5 \ 10^7$	

Table 5 –

Maximum values of lightning parameters according to LPL

First short stroke				LPL		
Current parameters	Symbol	Unit	I	II		IV
Peak current	I	kA	200	150	1(00
Short stroke charge	Q _{short}	С	100	75	5	0
Specific energy	W/R	kJ/Ω	10.000	5.625	2.5	500
Time parameters	T ₁ / T ₂	µs / µs		10 / 35	50	
Subsequent short stroke				LPL		
Current parameters	Symbol	Unit	I	II		IV
Peak current	I	kA	50	37,5	2	5
Average steepness	di/dt	kA/µs	200	150	10	00
Time parameters	T ₁ / T ₂	µs / µs		0,25 / 1	00	
Lon	g stroke			LPL		
Current parameters	Symbol	Unit	I	II		IV
Long stroke charge	Q _{long}	С	200	150	1(00
Time parameter	T _{long}	S	0,5			
Flash				LPL		
Current parameters	Symbol	Unit		II		IV
Flash charge	Q _{flash}	С	300	225	1:	50

Table 6

<u>Minimum values of lightning parameters and</u> related rolling sphere radius corresponding to LPL

Interception criteria				LF	۶L	
	Symbol	Unit	I	II	III	IV
Minimum peak current	I	kA	3	5	10	16
Rolling sphere radius	R	m	20	30	45	60

Table 7

Probabilities for the limits of the lightning current parameters

Probability	LPL				
that lightning current parameters are	I	II		IV	
smaller than the maxima defined in table 5	0.99	0.98	0.97	0.97	
greater than the minima defined in table 6	0.99	0.97	0.91	0.84	

	Maximum values (Dimensioning criteria)		(]	a)	
Lightning protection level	Max. lightning current peak value	Probability of the actually upcoming lightning current to be <u>less</u> than the max. lightning current peak value	Min. lightning current peak value	Probability of the actually upcoming lightning current to be <u>higher</u> than the min. lightning current peak value	Radius of the rolling sphere
Ι	200 kA	99 %	2.9 kA	99 %	20 m
II	150 kA	98 %	5.4 kA	97 %	30 m
III	100 kA	97 %	10.1 kA	91 %	45 m
IV	100 kA	97 %	15.7 kA	84 %	60 m

Lightning protection level	Interception criterion	Radius of the rolling sphere (final striking distance)	Min. peak value of current
	E _i	R (m)	I (kA)
IV	0.84	60	15.7
III	0.91	45	10.1
II	0.97	30	5.4
Ι	0.99	20	2.9

4 Lightning Protection Levels LPL (I,II,III,IV) with 4 types of relevant protection measures for the design of LPS are introduced

Level	R(m)	$\alpha(h=20)$	α (h = 30)	α (h = 45)	α (h = 60)	d(m)
Ι	20	25	*	*	*	5
II	30	35	25	*	*	10
III	45	45	35	25	*	15
IV	60	55	45	35	25	20

Rolling sphere radius, mesh size and protection angle corresponding to the type of LPS

	Protection method				
Type of LPS	Rolling sphere radius <i>R</i> m	Mesh size <i>M</i> m	Protection angle α°		
I	20	5 x 5	Soo figuro		
II	30	10 x 10	below		
III	45	15 x 15	DEIOW		
IV	60	20 x 20			

Risk management

SCOPE

Risk assessment for a structure or for a service due to lightning flashes to earth

To provide a procedure to evaluate this risk.

Once an **upper tolerable limit** for the risk has been selected, this procedure allows the selection of appropriate **protection measures** to be adopted to reduce the risk to or below the tolerable limit.

for each type of loss L_1 to L_4 corresponding to a relevant risk (R_1 to R_4) which is the sum of different risk components R_X Assessment of the average number of flashes to a structure

Table A.2 - Location factor C_d

Relative location	C d
Object surrounded by higher objects or trees	0.25
Object surrounded by other objects or trees	0.5
Isolated object: no other objects in the vicinity	1
Isolated object on a hilltop or a knoll	2

$$N_g = 0.04 T_d^{1.25} km^{-2} year^{-1}$$

 $N_g = 0.1 \text{ km}^{-2} \text{ year}^{-1}$ on the oceans

 $N_g = 8 \text{ to } 15 \text{ km}^{-2} \text{ year}^{-1}$

in Brazil, **Colombia**... Indonesia + Northern Australia, Central- and South-Africa.

Figure A.1 – Collection area of an isolated structure

 $A_d = L W + 6 H (L + W) + 9 \pi H^2$

Assessment of probability P of damage for a structure

Table B.1

<u>Values of probability P_A that a lightning will cause a shock to living beings due</u> <u>to dangerous touch and step voltages</u>

Protection measure	P _A
No protection measures	1
Electrical insulation of exposed conductor (e.g. at least 3 mm cross-linked polyethylene)	10 -2
Effective soil equipotentialization	10 -2
Warning notices	10 -1

Table B.2

Values of P_B depending on the protection measures to reduce physical damages

Characteristics of structure	Type of LPS	P _B
Structure not protected by an LPS	-	1
Structure protected by an LPS or structure with continuous metal or	IV	0.2
reinforced concrete framework acting as natural LPS, bonding and	III	0.1
earthing included	II	0.05
	Ι	0.02

Table B.3

Value of the probability P_{SPD} depending on LPL for which SPD are designed

LPL	P _{SPD}
No SPD system	1
III-IV	0.03
II	0.02
Ι	0.01

Losses L

For each type of loss $L(L_1 \text{ to } L_4)$:

Ex : Loss of human life L₁

$$L_{1t} = \frac{n}{n_{+}} \frac{t}{8760}$$
 (relative number of victims)

n = number of possible victims from a lightning strike

- n_t = expected total number of persons in the structure
- t = number of hours per year for which the persons are present in a dangerous place outside of the structure (L_t) or inside the structure (L_t, L_f, L_o)

Table C.1 **Typical mean values of L_t, L_f and L_o**

Type of structure	$\mathbf{L}_{\mathbf{t}}$
All – Inside buildings	10 ⁻⁴
All – Outside buildings	10 ⁻²

Type of structure	$\mathbf{L}_{\mathbf{f}}$
Hospitals, Hotels, Civil buildings	10 ⁻¹
Industrial, Commercial, School	5 10 ⁻²
Public entertainment, Churches, Museum	2 10 ⁻²

Type of structure	Lo
Risk of explosion	10 ⁻¹
Hospitals	10 ⁻³

Figure 3 - Procedure for selection of protection measures in a structure

LPMS = LEMP protection measures system

RISK M	ultilingua	L - FPM	s -																	
e kepor	сораон	1																		
		S	ΤF	21	IC	T		RF												
· · · · · · · · · · · · · · · · · · ·													<u> </u>			Collec	tion area [m²]		
	1.15			Structur	e data and	I characte	eristics							Structu	lle 🛛	Ad	0,00	E+00	Am	1,96E+05
	0		HD 0	Нро			РВ 1	1	1		n		<u> </u>	Powe	r	3.6	OE+04	1.00	E+06	Ada 0.00E+00
		l	0		I	·							C	ommunic	ation	3,6	0E+04	1,00	E+06	0,00E+00
	~ ~	~ ~		0.5		0.7				0.40					Expected	annual nu	imber of d	angerous	events	
(*	0.2	(3	(4	(5	СЬ	(/	(8 (а	(IU	(lot	al		Structu	lie	ND	0,00	E+00	NM	0,00E+00
			D	ata and cl	naracteristi	cs of the	power li	ne									NL 00	1	11	NDa
rho	Le	-	0	Nw		0				PLI	PSP	D		Powe	ration	0,0	0E+00	0,00	2+00 F+00	0,00E+00
500	1000	6								1	1			ommanic	-00011	0,0	02.00	1 0,00		0,002.00
Service	Ct	- Co	1	Ce	Eda		La	Wa	-	Ha	Нра					Values of	risk comp	onents		
Coordin	ated CPD on					C 62205	2 is pros	U U		U			PA.		L PC	Loss	of human	life	V	PW P7
Coordina	aleu arb pi	Diection II	leeung tr	ne requirer	nents of re	0.02303-	o is piuv	Mueu			i re	S	0 00E+0	00,00E+	000,00E+	000.00			× E+00 0,0	0E+000,00E-
Coordin	ated SPD pri	otection n	ieet Ct		Shy	IC		C			∏ Ye	S	0,00%	0,00%	\$ 0,00	% O, O	XLX		0% 0	,00% 0,00
					V	H		9					DA		L	.oss of ser	vice to th	e public		
			Da	ata and ch	aracteristic	s of the t	elecom	line					H na	10.00E+	000.00E+	0010.00E+	-00	0.00	× E+0010.0	
tho	LC	Ho	10	Uw	Ks3	ł	Ks4	PLD		PLI	PSP			0.00%	s 0,00%	8 0,00	%	0,0	0% 0	,00% 0,00
Service	1000	Cr	1	1,0 Ce	Eda		ia	Wa		Ha	Ho		DA			V/ S 🗖		i e		
	1	1		1	0		0		1	0	1 0		RA	0.00F+	nol H	M		0.00	+00	
Coordin	ated SPD pr	otection n	neeting th	he requirer	nents of IE	C 62305-	-3 is prov	vided			T Ye	s	1	0,00%	8			0,0	0%	
Coordin	ated SPD pr	otection n	neeting ti	he requirer	ments of IE	C 62305-	4 is prov	vided			□ Ye	s			1 55	Loss of e	economic	value		
													RA 0 000 TO	HB	RL	HM	HU	H	V	HW HZ
				ru	PU	ra	PA	A K	<s2< td=""><td>rp</td><td>rf</td><td>ηp</td><td>0,00%</td><td>0,00%</td><td>\$ 0,00%</td><td>\$ 0,00</td><td>% 0,00</td><td>% 0,0</td><td>0% 0</td><td>,00% 0,00</td></s2<>	rp	rf	ηp	0,00%	0,00%	\$ 0,00%	\$ 0,00	% 0,00	% 0,0	0% 0	,00% 0,00
Zo	ne character	istics		0	1	0	1		1	1	0	0								
			7(Λ		the	hz	Lo	B		BD	BI	Be		ulat diri k			BT
L	oss of humar	ı life	4			0	D , UGE	+00	1	0	0,00	001	L1	1	1 110					
				0	CC		C	1		-	1		0 00E+0	0 0,00E+	00 0,00E+	00 0,00E+	-00 0,00E	+00 0,00	E+00 1,0	00E-05 R <r< td=""></r<>
Loss of	f service to t	ne public			21			+00	1	0	0,0	1		010 00F+	nnl	10.00E-	-0010 005-	+0010 001	-+0011 (INE-03L BZB
Loss	of cultural h	eritage				0	0,00E	+00	1		0,0	1	LB	-10,000 -		0,002		Z		
							,			-			0 00E+0	NO DOF+	001	10.00			+00110	INF-03 RZR

Physical Damages and Life Hazards

SCOPE

Requirements for protection of a structure against physical damage by means of an LPS and for protection against injury to living beings due to touch and step voltages in the vicinity of a lightning protection system

1) Design, installation, inspection and maintenance of an LPS for structures of any height;

2) Establishment of measures for protection against injury to living beings due to touch and step voltages.

Physical damage to structures and life hazard

Against physical damage :

- external + internal LPS

Against injuries of living beings due to touch and step voltages :

- physical restrictions + warning notices ;
- insulation of exposed conductive parts ;
- increase of the surface soil resistivity

External LPS

1) Interception of direct strikes :

- air-termination system

2) Conduction of the lightning current safely towards earth :

- down-conductor system

3) Dispersion of the current into the earth :

- effective earth-termination system

Properly designed air termination system : any combination of rods, catenary wires and meshed conductors.

Great care to exposed points, corners and edges (upper parts!)

<u>3 methods used :</u>

- RSM (EG model ; always !)
- Protection angle method (limited : height !)
- Mesh method (plane surfaces)

NOTE The "rolling sphere" radius shall comply with the selected type of LPS (see table 2)

If there are external areas of the structure situated in heights which are higher than the radius of the corresponding rolling sphere (Tab. 5.1.1.3), an airtermination system has to be installed applying e.g. the mesh method.

Table of minimum thicknesses of metal sheets for airtermination systems (see IEC 62305-3)

Class of LPS	Material	Thickness t (mm)	Thickness t' (mm)
I to IV	Lead	-	2.0
	Stainless steel or galvanized steel	4	0.5
	Titanium	4	0.5
	Copper	5	0.5
	Aluminium	7	0.65
	Zinc	-	0.7

Down-conductor system

Class of LPS	Typical distances m
	10
II	10
III	15
IV	20

Table 4

<u>Typical values of the distance between down-conductors and</u> <u>between ring conductors according to the type of LPS</u>

Down-conductor system

 $l(\mathbf{m})$ = distance to the nearest equipotential bonding point

Table 10 – Isolation of external LPS – Values of coefficient k

Class of LPS	k _i
Ι	0.08
II	0.06
III, IV	0.04

Table 11 – Isolation of external LPS – Values of coefficient kc

Number n of down- conductors	k _c
1	1
2	1 0.5
4,>4	1 1/n

Table 12 – Isolation of External LPS – Values of coefficient km

Material	k _m
Air	1
Concrete, bricks	0.5

Construction of the external lightning protection system on a low (H < 20 m) structure of steel-reinforced concrete using the reinforcement of the outer walls as natural components

1: air-termination rod ; 2: horizontal air-termination conductor ; 3: down-conductor ; 4: T-type joint ; 5: cross-type joint ; 6: connection to steel reinforcing rods ; 7: test joint ; 8: ring earth electrode (type B earthing arrangement) ; 9: flat roof with roof fixtures ; 10: T-type joint, corrosion resistant. Lightning protection system design for a cantilevered part of a structure

1:air-termination rod ; 2: horizontal air-termination conductor ; 3:down-conductor ; 4: T-type joint ; 5: cross type joint ; 6: test joint ;7: ring earth electrode (type B earthing arrangement) ; 8: equipotentialization ring conductor ; 9: flat roof with roof fixtures ; 10: terminal for connecting the equipotentialization bar to the internal LPS.

Values of the partitioning coefficient k_c

Type of air- termination system	Number n of down- conductors	k _c for type A earthing arrangement	k _c for type B earthing arrangement
Single rod	1	1	1
Wire	2	0.66 *	0.5 1 **
Mesh	≥ 4	0.44 *	0.25 0.5 ***
Mesh	≥ 4, connected by horizontal ring conductors	0.44 *	1/n 0.5 ****

•Valid for single earthing electrodes with comparable earthing resistances ; if earthing resistances of single earthing electrodes are clearly different $k_c = 1$ has to be assumed

** Values range from $k_c = 0.5$ where $w \ll H$ to $k_c = 1$ with $H \ll w$ (see figure 6.22)

*** The relation to calculate k_c in figure 6.24 is an approximation for cubic structures and for n 4; the values of H are assumed to be in the range of 5 to 20 m

**** If the down-conductors are connected horizontally by ring conductors, the current distribution is more homogeneous in the lower parts of the down-conductor system and kc is further reduced (especially valid for tall structures, see figure 6.24 where H, c_s and c_d are assumed to be in the range of 5 m to 20 m).

Partitioning coefficient k_c for a wire air-termination system and a type B earth-termination system

where

n = total number of down-conductors (add internal down-conductors if they exist)

w = spacing between down-conductors

H = height (spacing) between horizontal ring conductors

Earth termination system (R<< !) R < 10 Ω (low frequency)

Type A arrangement :

horizontal or vertical earth electrodes connected to each down conductor

length > l_1 (horizontal) 0.5 l_1 (vertical or inclined)

Type B arrangement :

ring conductor external to the structure in contact with the soil (or foundation earth electrode)

mean radius of the area $r \geq l_1$

If $r < l_1$, add horizontal or vertical (or inclined) electrodes of length l_r (horizontal) and l_v (vertical) connected to the ring earth electrode such as

 $l_{\rm r} = l_1 - {\rm r}$ and $l_{\rm v} = 0.5 \ (l_1 - {\rm r})$

Figure 2 <u>Minimum length I₁ of each earth electrode</u> <u>according to the type of LPS</u>

NOTE Types III and IV are independent of soil resistivity.

$$U = I \frac{\rho}{2 \pi} \frac{s}{d(d + s)}$$

Protection measures against injuries of living beings

Vicinity of the down conductors of the LPS !

protection measures due to **touch voltages** either by insulating the exposed down conductors (e.g. 3 mm cross-linked polyethylene) or by imposing physical restrictions and warning notices to minimize the probability of down-conductors being touched

protection measures due to **step voltages** by equipotentialising with a meshed earth-termination system and by using the same other protection measures imposed for the touch voltages : physical restrictions and warning notices to minimize the probability of access to the dangerous area within 3 m of the down-conductor

Electrical and electronic systems

within structures

IEC TC 81 : LIGHTNING PROTECTION

Electrical and electronic systems within structures

IEC 62305-4 Part 4 : Electrical and electronic systems within structures

- 4-1 **Protection against LEMP : general principles**
- 4-2 Earthing and bonding; magnetic shielding and line routing
- 4-3 SPD system
- 4-4 Management of an LPMS

SCOPE

Design, installation, inspection, maintenance and testing of a LEMP protection measures system (LPMS) for electrical and electronic systems within a structure, able to reduce the risk of permanent failures due to lightning electromagnetic impulse.

Outside:

- protection against electromagnetic interference due to lightning;
- detailed design of the electrical and electronic systems themselves

Protection measures

to reduce failure of electrical and electronic systems

For structures :

LEMP protection measures system (LPMS) consisting of the following measures to be used alone or in combination :

- earthing and bonding measures
- magnetic shielding
- line routing
- coordinated SPD protection

For services :

- SPDs at different locations along the length of the line
 - and at the line termination
- -- magnetic shields of cables

Introduction

- Permanent failure of electrical and electronical systems can be caused by the lightning electromagnetic impulse (LEMP) via:
 - conducted and induced surges transmitted to apparatus via connecting wiring;
 - the effects of radiated electromagnetic fields directly into apparatus itself.*

*neglible for equipment that complies with relevant EMC standards

- Surges to the structure can be generated :
 - Surges external to the structure are created by lightning flashes striking incoming lines or the nearby ground, and are transmitted to electrical and electronic systems via these lines;
 - Surges internal to the structure are created by lightning flashes striking the structure or the nearby ground.

Design of an LPMS

Design of an LPMS

Figure 2c LPMS using internal line shielding and SPD protection at entry of LPZ 1. Apparatus protected against conducted surges $(U_2 < U_0 \ I_2 < I_0)$ as well as against radiated magnetic fields $(H_2 < H_0)$

Type of LPS	Lightning impulse current capability		
	In TN systems	In TN systems (L-N)	In TN systems (N-PE)
Ι	\geq 100 kA / m	\geq 100 kA / m	≥ 100 kA
П	\geq 75 kA / m	\geq 75 kA / m	\geq 75 kA
III/IV	\geq 50 kA / m	\geq 50 kA / m	\geq 50 kA
m : Quantity of conductors, e.g. for L1, L2, L3, N and PE; $m = 5$			

Protection to reduce the failure of internal systems (1)

Protection against LEMP to reduce the risk of failure of internal systems shall limit :

- overvoltages due to lightning flashes to the structure resulting from resistive and inductive coupling ;
- overvoltages due to lightning flashes near the structure resulting from inductive coupling;
- overvoltages transmitted by lines connected to the structure due to flashes to or near the lines;
- magnetic field **directly coupling** with internal systems.

Protection to reduce the failure of internal systems (2)

System to be protected inside a LPZ 1 or higher

- magnetic shields to attenuate the inducing magnetic field
- suitable routing of wiring to reduce the induction loop

Bonding at the boundaries of LPZ for metal parts and systems crossing the boundaries (bonding conductors + SPDs)

Coordinated SPD protection (overvoltages < rated impulse withstand voltage)
Basic protection measures in an LPMS

1) <u>earthing</u> and <u>bonding</u> :

earth-termination system + bonding network

ex : each conductive service incoming to the structure shall be bonded directly or via suitable SPD at the entrance point.

2) <u>magnetic shielding and line routing</u> :

- grid-like spatial shielding
- shielding of internal lines (shielded cables, cable ducts,...)
- shielding of external lines entering the structure
- line routing of internal lines (avoiding induction loops and reducing internal surges)

3) <u>surge protective device system</u> (SPD system) :

limiting both external and internal surges (coordinated set of SPDs)

Example of a 3D earthing system consisting of the bonding network interconnected with the earth-termination system

Meshed earth-termination system of an industrial plant

1: buildings with meshed network of the reinforcement 2: tower inside the plant 3: stand-alone equipment

4: cable tray

IEC TC81 (+ **CLC TC81X**)

STANDARD TO BE IMPROVED

during the maintenance period

NATIONAL COMMITTEES should avoid to promote fancy devices which do not comply with it.