

渦流式流量計

AVF7000 系列

ALIA TECHNOLOGY LLC 633 W. 5th Street, 26th Floor, Los Angeles, CA 90071, USA TEL : +1 - 213 - 533 - 4139 FAX : +1 - 213 - 223 - 2317 URL : http://www.alia-inc.com e-mail : vtx@alia-inc.com OP7000.1.1.7.R13CHT

1. 流量計檢查	3
2. 產品概述	3
3. 工作原理	3
4. 規格參數	4
5. 尺寸圖示	5
6. 安裝方式	6
7. 接線圖	8
7.1 帶 4-20 mA (兩線制) 或脈衝輸出,但無溫壓補償功能	8
7.2 帶 RS485 通訊,但無溫壓補償功能	8
7.3 帶溫壓補償功能,4-20 mA (兩線製) 或脈衝輸出	9
7.4 帶溫壓補償功能,RS485 通訊	10
7.5 分離板	11
8. 面板顯示	12
9. 功能	12
9.1 按鍵功能	12
9.2 顯示功能	12
9.3 現場應用	13
10. 參數操作流程圖	14
11. 參數設置	17
11.1 基本參數設置	17
11.2 高階參數設置	20
11.3 輸出電流 4-20 mA 校正	21
11.45點線性修正	22
11.5 放大倍數增益設置	23
11.6 溫度壓力校正	23
12. MODBUS 通訊設置	25
13. 渦流常見問題	26

OP7000.1.1.7.R13CHT

AVF7000 操作手册

1. 流量計檢查

- A. 首先看外包裝,確認是否有損壞?假如有嚴重的破損,應該立刻通知 ALIA 客服中心。
- B. 打開包裝後,請確認流量計是否損壞?或有無零件缺少?
- C. 閱讀操作說明書,如果有任何部分不了解,請 mail 給 ALIA 技術部門。
- D. 請確認收到的流量計規格是否符合正常操作狀態?
- E. 請上電檢測 LCD 顯示幕是否正常顯示?
- F. 選擇良好的安裝位置,並確認符合安裝條件。
- G. 依據安裝指示,移動流量計嵌入管線。
- H. 開始連接線路,特別注意配線方面是否有做隔離及接地防護?
- 通電後請觀察是否有漏電(注意自身安全)?並觀察顯示是否有出現任何一數值?如果沒有出現,請再次確認以上步驟。 尤其是線路、電源、電源接地等是否都正確?倘若不能解決請聯繫 ALIA 技術中心或當地代理商。

2. 產品概述

渦流流量計是一種應用卡門漩渦原理的流量計,用於測量液體,氣體和蒸汽的流量計,也可測量含有微小顆粒,雜質的渾 濁液體,廣泛應用於石油,化工,製藥,造紙,冶金,電力,環保,食品等行業。

3. 工作原理

ALIA 應力式渦流流量計是基於卡門"渦流"原理而研製的一種新型流量計。流量計是由一個內徑與公稱直徑相同的表體 和一截面為三角形的柱體組成,當流體經過三角柱體時,在三角柱體兩側交替產生漩渦,在柱體下游交替排列的兩列漩渦 被稱為渦流,形成漩渦的頻率與流體的流速成正比。

漩渦分離在柱體兩側產生壓力脈動,探頭體產生交變應力,埋設在探頭體內的壓電晶體元件受交變應力作用而產生交變電荷,檢測放大器將交變電荷進行變換處理後,輸出脈衝信號,此脈衝信號頻率等於漩渦分離頻率。

F—渦街頻率 (個數) hz

d—漩渦發生體寬度

ν──流體流速

St—Strouhal number, dimensionless

對於一定柱形的漩渦發生體,在一定流量範圍內,是雷諾數的函數,在正常流量可認為是常數。

在渦流流量計的線性測量範圍,渦流探頭檢測到的頻率 F 即可求得管道內的流速,在由流速計算出體積流量,在一定時間 內渦流頻率與體積流量關係如下:

Q=3600 F/K

K: 儀錶係數

F: 頻率值

Q: 工況流體體積 (m³/hr)

4. 規格參數

OP7000.1.1.7.R13CHT

• Size	: 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150	Local Display	: 2 or 3 lines LCD
	200, 250, 300, 350, 400, 450, 500 mm		: 6 Digit flowrate
Measuring Range	: Steam -1.6~540,000 kg/hr		: 8 Digit Totalizer
	: Gas -3~46,000 m ³ /hr	 Current Output 	: 4-20 mA (2 wire) with HART signal
	: Liquid -0.3~4950 m³/hr	Load	: Rohm= (VDC-12) * 50
Material	: Stainless Steel 301 / 304 / 316	Pulse Output	: Scale Pulse
Accuracy Liquid	: +/-0.7% value of reading	Load	: 1000-5000 Ω
Gas & Steam	: +/-1.0% value of reading	Communication	: HART (Compatible)
Unit	: Nm ³ /hr, Nm ³ /min, Nm ³ /s, m ³ /hr, m ³ /min, m ³ /s		or RS485 (MODBUS Protocol)
	L/hr, L/min, L/s, t/d, t/hr, t/min, kg/hr, kg/m	Data Storage	: Operation parameter and totalizer
	kg/s, USgal/min, UKgal/min, ft³/hr, lb/hr, bbl/d		figures are stored by EEPROM for more
Repeatability	: +/-0.2% value of reading		than 10 years
Process Connection	: Flange / Wafer	Housing Material	: Aluminum Alloy
Flange Type	: JIS 10K / JIS 20K / JIS 40K	Cable Entry	: Standard: M20 * 1.5 Option: 1/2"NPTF
	ANSI 150# / ANSI 300# / ANSI 600#	Power Supply	: 12-32 VDC
	DIN PN10 / PN16 / PN25 / PN40		: Ni-MH Battery (3 years working hours)
Wafer Type	: DN40-DN250 without Temp. / Pressure Sensor	KeyPad	: 3 Internal keys for programming
Temperature	: -40~280 °C (Standard)		and display control
	: -40~420 °C (Optional)	Option	
Ambient Temperature	: -20~60 °C	Pressure Sensor	: Pressure compensation
Pressure	: 78 kgf/cm ² (Max.)	Signal Output	: 0-30 m VDC (20 uA Power Supply)
Protection Class	: IP65	Temperature Sensor	: Temperature compensation
	: Intrinsically Safe, Eex ia IIC T4	Signal Output	: PT1000 (2 wires)
	: Explosion Proof, Ex d IIC T6		

尺	! 寸										
mm	Inch	H1	H2	H3	H4	H5	L1	L2	L3	L4	D1
15	1/2"		430					200			
20	3/4"		435					200			
25	1"		440		455	440		200	275	275	
32	1-1/4"		452		468	452		200	275	275	
40	1-1/2"	415	468	477	505	468	70	200	275	275	85
50	2"	425	480	484	518	480	70	200	275	275	99
65	2-1/2"	440	502	495	535	502	70	200	275	275	118
80	3"	460	515	519	550	515	70	225	300	300	132
100	4"	480	534	543	571	534	70	250	350	350	156
125	5"	500	564	560	599	564	70	275	375	375	184
150	6"	530	593	585	631	593	70	300	400	400	211
200	8"	578	647	635	682	647	98	350	450	450	248
250	10"	628	700	685	735	700	114	400	500	500	298
300	12"		750		785	750		450	550	550	
350	14"		805		840	805		500	600	600	
400	16"		861		895	861		550	650	650	
450	18"		910		945	910		600	700	700	
500	20"		965		998	965		650	750	750	

● 注意:L5=縮徑后L4+縮徑前管道內徑;(舉例:DN200 mm縮徑為DN150 mm, L5=400 mm+200 mm=600 mm)

夾管式

夾管式+壓力感測器 製程不中斷時可更換感測器

縮管型+溫度+壓力傳感器

夾管式分離型

法蘭式分離型

法蘭式+溫度+壓力感測器

縮管型

⇔

H2

H5

6. 安裝方式

渦流式流量計管段位置安裝的選擇是非常重要,關係到測量精度問題

●接地

AVF7000 要求要有良好的接地,以消除雜信干擾,接地如下圖所示:

只需將放大器表頭的外殼接地即可,感測器則不需要再次接地。

接地點例如: 樓梯,欄杆等。

請查看渦流檢測到的頻率值是否為 50 Hz 或者 60 Hz 來初步判斷渦流接地是否良好,查看頻率值見 9.2。

7. 接線圖

接線如下圖所示:

連接信號線應選擇原廠配備的 AVPV2*0.5 mm²兩芯線纜或 AVPV3*0.5 mm² 三芯線纜。連接端子應確保緊固勞靠,在連接線纜時還需注意將遮罩線與放大器外殼連接。

7.1 帶 4-20 mA (兩線制) 或脈衝輸出,但無溫壓補償功能

7.2 帶 RS485 通訊,但無溫壓補償功能

AVF7000 操作手册 7.3 帶溫壓補償功能,4-20 mA (兩線製) 或脈衝輸出

注意:S1、S2 是渦街傳感器接線端子

Terminal	Cable color	Sensor
PI+	red	
PI-	blue	Prossure concor
PV+	black	Flessule selisor
PV-	yellow	
T+	white	
TA-	red	Temperature sensor
TB-	red	
S1+	orange	Vortov sonsor
S2+	orange	VUICA SEIISUI

9. 功能

9.1 按鍵功能

Key Name	Button	Function			
Setting	SET	短按 (1s)用於 "進入清單查看和設置" 或者 "退出清單設置"			
Move		短按 (1s)用於"向後清單翻頁"、參數設定時用於"移位"			
Up	\wedge	短按 (1s)用於"向前清單翻頁"、參數設定時用於"數值加 1" 長按 (3s)用於"進入選定清單的參數設置"和"確定"			

9.2 顯示功能

10.5 m3/h	2行LCD顯示模式:
E 20.0 m3	LCD只顯示瞬間流量累積量。

在正常顯示介面,通過按<mark>^</mark>鍵 3s 左右進入後,可查詢如下頻率、密度、壓力、溫度、電流、百分比:

提示符	F	Den	Р	Т	Curr	Per	Р&Т
顯示變數	頻率	密度	壓力	溫度	電流	百分比	壓力溫度

其他顯示說明:

- ➢ 若啟動自動採集壓力並且壓力信號異常, "P&T"顯示介面的壓力值會閃爍報警
- ➢ 若啟動自動採集溫度並且溫度信號異常, "P&T"顯示介面的溫度值會閃爍報警
- ▶ P和T顯示的為預先輸入電路板的壓力溫度值, "P&T"顯示為從壓力溫度傳感器檢測的值

9.3 現場應用

渦流現場測量時經常會遇到兩種情況:

A. 無流量時,渦流顯示有數值

B. 有流量時,渦流顯示0

A 現象的原因是渦流被外界環境干擾,收到一些干擾信號,如下圖干擾信號值超過了渦流電路板的測量閥值,所以導致渦 流會顯示數值。要解決這個資訊 必須想辦法使干擾信號幅值低於渦流測量閥值。

B 現象的原因是流量產生的頻率信號值幅值太小,如下方脈衝信號(流量信號)幅值小於渦流電路板的測量閥值,所以導致 渦流電路板無法正常測量。要解決這個資訊 必須想辦法使流量信號幅值高於渦流測量閥值。

如何調整干擾信號和流量信號的幅值?

針對此現象,渦流設計了信號放大倍數,放大倍數調整的範圍為2000-2000000。

放大倍數的預設值如下:

測量介質為液體時,放大倍數是 5000

測量介質是氣體 (或者蒸汽) 時,放大倍數是 80000

以下介紹放大倍數的調整方法:

☆ 放大倍數由兩部分組成: 放大倍數係數和放大倍數增益。

放大倍數係數在"Max AMP.";放大倍數增益在"AMP.Channel"。

如果放大倍數是 5000,那放大倍數係數是 500, 放大倍數增益是 10¹, 即 500*10¹=5000,如下圖所示:

	Max Amp 500			AMP Channels CH1	
	放大倍數 (範圍:200		(CH_1	放大倍數增益 =10 ¹ ;CH_2=10 ² ;C	 H_3=10 ³)
☆	針對上面提到的A現象 可將放大倍數係數("Ma 放大倍數增益("AMP.C 那放大倍數就是400*10 修改完放大倍數後,看滿	我們要把放大倍數調小 ux. AMP"窗口)數值改為 hannel"窗口)CH_1不 =4000。 航走是否正常顯示,如果	、,假設現在的放大倍 § 400 , 變 , 還不 OK,那再適當個	數是 5000 , 多改放大倍數係數。	
☆	B現象剛好是A現象的反	作用,比如要從5000	調到 30000 ,則:		

- 放大倍數係數 ("Max. AMP" 窗口) 數值改為 300, 放大倍數增益 ("AMP. Channel" 窗口) 改為 CH_2。 則放大倍數為 300*10²=30000。
- ☆ 綜上所述,放大倍數的調節要根據現場情況,調完後,使無流量時,渦街顯示為0;有流量時,能正確顯示流量。

AVF7000 操作手册 **11. 參數設置**

11.1 基本參數設置

OP7000.1.1.7.R13CHT

OP7000.1.1.7.R13CHT

AVF7000 操作手册 11.2 高階參數設置

11.3 輸出電流 4-20 mA 校正

AVF7000 操作手册 11.4 5 點線性修正

AVF7000 操作手册 11.5 放大倍數增益設置

AVF7000 操作手册 12. MODBUS 通訊設置

本產品產用標準 MODBUS-RTU 模式。詳細設置訊息如下: MODBUS: MODBUS-RTU mode Baudrate: 9600 bps Serial data mode: Parity: None Databit: 8 Stopbit: 1 Communication address: 01

AVF7000 操作手册 13. 渦流常見問題

1. 在閥門關閉的時候,渦流顯示流量值。

- a. 當渦流檢測到的頻率值為 50 或者 60 Hz。這個時候渦流接地有問題, AVF7000 要求良好的接地,以消除雜訊干擾, 接地地點比如: 樓梯, 欄杆等渦流接地線不要和其他電力設備接地線互相纏繞,也不要共用接地端,條件允許的情況下,請為渦流單獨設置接地棒。
- b. 管道震動太大超過渦流抗震範圍時,請將渦流安裝位置進行機械加固或者用軟管接頭來減震。
- c. 渦流周圍有強力電源設備或者強力電磁干擾時,請採取相關措施以減弱強電干擾或者更換渦流的安裝位置。
- d. 渦流放大倍數太大, 請適當的降低渦流放大倍數。
- 2. 管道有流體流過的時候,渦流顯示0。
 - a. 管道實際流量太小,請增加實際流量值,並確保管道最小流量值達到渦流最低測量值。
 - b. 放大倍數太小,請適當的增大渦流放大倍數。
 - c. 如果是測量蒸汽,請確保實際溫度壓力是否與電路板內部參數一致。
 - d. 電路板或者渦流感測器故障時,請返回 ALIA 檢修。

3. 瞬間流量顯示不穩定。

- a. 實際流量不穩定。
- b. 管道存在震動干擾, 管道震動超過渦流抗震範圍, 請將渦流安裝位置進行機械加固或者用軟管接頭來減震。
- c. 渦街放大倍數較小, 請適當的增大渦流放大倍數。
- 4. 渦流顯示流量值與實際值誤差大。
 - a. 請確認渦流安裝方向是否有誤,並請依照渦流本體指示的方向安裝。
 - b. 安裝過程中同心度偏差較大,安裝時請嚴格確保同心度,必要的時候請採用專用工具。
 - c. 墊片內徑小於管道或者伸入管道內,形成擾流,請選擇合適並且正確的安裝墊片。
 - d. 測量蒸汽的時候,運用溫度與運用壓力發生變化,檢查渦街內部溫度壓力值是否與實際運用相符合。
 - e. 實際流量太小,我們無法準確的測量,請提高實際流量或者選擇口徑較小的流量計。
 - f. 渦流 k 係數設置有誤,請重新計算 k 係數。

新的 k 值=(Display flowrate / Actual flowrate) * k (初始值)。